• Skip to primary navigation
  • Skip to content
  • Skip to footer
  • About
      About HJ Dashboard
  • Data Science & ML
  • Computer Science
  • Math
  • IT Backyard

    [Deep Learning Basic Starting with TF] 실습 7-2-2. Application & Tips: 학습률, 전처리, 오버피팅을 TensorFlow로 실습

    정규화, 학습률 감쇠

    November 11, 2024

    HJ

    HJ

    Leave HJ’s trace, All-In

    • Suwon, Republic of Korea
    • Email
    • Website
    • Instagram
    • GitHub
    • LinkedIn
    • X

    On This Page

    이번 강의에서는 tensorflow를 활용해 normalization, learning rate decay를 실습하였다. 추가로 새롭게 학습한 코드는 없다.

    코드 보러가기



    별도의 출처 표시가 있는 이미지를 제외한 모든 이미지는 강의자료에서 발췌하였음을 밝힙니다.

    태그: 머신러닝, 텐서플로

    카테고리: Data Science & ML

    공유하기

    Twitter Facebook LinkedIn
    이전 다음

    댓글남기기

    참고

    [Articles] PromptDresser: Improving the Quality and Controllability of Virtual Try-On via Generative Textual Prompt and Prompt-aware Mask

    September 12, 2025

    Developed PromptDresser, a powerful virtual clothing tool with distinctive masking techniques.

    [Articles] Reversible Instance Normalization for Accurate Time-Series Forecasting Against Distribution Shift

    September 6, 2025

    An overview of RevIN, a simple yet effective normalization method that tackles the distribution shift problem in time-series forecasting by reversibly removi...

    [Articles] StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

    September 4, 2025

    An overview of StarGAN, a novel and scalable approach that can perform image-to-image translations for multiple domains using only a single model.

    [Articles] Improving Language-Understanding by Generative Pre-Training

    August 25, 2025

    Introducing Generative Pre-Training (GPT) model.

    • 팔로우:
    • X
    • GitHub
    • Instagram
    • 피드
    © 2025 All-In. Powered by Jekyll & Minimal Mistakes.